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Abstract. The transport properties of a single quantum dot were measured at low temperature in a regime
of strong asymmetric tunnel coupling to leads. By tuning this asymmetry, the two parameters of the Kondo
effect in a quantum dot, the Kondo temperature and the zero-bias zero-temperature conductance, were
independently controlled. A careful analysis of the Coulomb energies and of the tunnel couplings was
performed. It allowed an estimate of the Kondo temperature independently of its value obtained via
the temperature dependence of the conductance. Both are in good agreement. We finally compared our
experimental data with an exact solution of the Kondo problem which provides the dependence of the
differential conductance on temperature and source-drain voltage. Theoretical expectations fit quite well
our experimental data in the equilibrium and out-of-equilibrium regimes.

PACS. 72.15.Qn Scattering mechanisms and Kondo effect – 73.21.La Quantum dots – 73.23.Hk Coulomb
blockade; single-electron tunneling – 85.35.-p Nanoelectronic devices

1 Introduction

Since its observation in single quantum dots in 1998 [1–3],
the Kondo effect has been measured in many different
kinds of artificial structures: carbon nanotubes [4], dou-
ble quantum dots [5], silicon MOSFET [6], quantum point
contact [7], single atom [8] and single molecule attached to
reservoirs [9], quantum antidot [10] and quantum ring [11].
It thus appears as a generic effect in nanostructures. The
Kondo effect can be understood theoretically with the help
of the Anderson hamiltonian which describes an electronic
impurity with Coulomb repulsion coupled to Fermi-liquid
reservoirs [12]. Due to the presence of a spin degener-
acy in the occupation of the impurity site by electrons,
electronic correlations lead at sufficiently low tempera-
ture to the screening of the spin of the impurity and the
system retrieves a Fermi-liquid behaviour. Measurements
have checked the main qualitative theoretical predictions
on the Kondo effect: its peculiar temperature dependence,
the presence of a zero-bias anomaly in the source-drain
voltage characteristics independent of the gate voltage and
the linear splitting of this peak with magnetic field. But
oddly enough, qualitative comparisons between theoreti-
cal predictions and experiments are scarce.

Two main difficulties can be pointed out to explain
this lack of comparison. First, most of the theoretical
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results are numerical, rendering their use quite delicate
for experimentalists. Secondly, there is still a gap be-
tween the experiments which normally deal with many-
electrons quantum dots, and the theoretical calculations
mostly available for few-electrons system. Up to now,
Goldhaber-Gordon et al. [13] have performed the most ex-
tensive comparison in the equilibrium regime (zero source-
drain voltage) between experimental data and theory.
Rosch et al. [14] managed to solve the Kondo problem
in the limit of large magnetic field for any source-drain
voltage and in the limit of large source-drain voltage for
any magnetic field. They compared their results with the
experimental data from Ralph and Buhrman in a sin-
gle charge trap [15]. To our knowledge, this is the only
comparison between theory and experiment in the non-
equilibrium regime. In 1998, Schiller and Hershfield calcu-
lated for a special set of parameters an exact solution to
the Kondo problem [16]. This result takes the form of an
analytical formula, thus opening the possibility of a com-
plete comparison between experimental data and theory
in equilibrium and out-of-equilibrium regimes. But, to our
knowledge, this comparison has not been performed yet.

In this article, we present measurements of the Kondo
effect in a quantum dot asymmetrically tunnel coupled
to its leads. This statement is obtained after careful ex-
traction of the tunnel couplings to the leads via analysis
of the lineshape of the Coulomb peaks (Sect. 3). In this
regime of asymmetrical tunnel coupling, we were able to
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Fig. 1. Conductance versus plunger-gate voltage measured at
T = 52 mK, 100 mK, 200 mK, 310 mK, 390 mK and 655 mK
at zero source-drain voltage. The conductance in the valley
between the peaks labelled with 2 and 3 decreases with in-
creasing temperature, a behaviour characteristic of the Kondo
effect. Insert: scanning electron microscope picture of a struc-
ture similar to the one measured.

control independently the two parameters of the Kondo ef-
fect: the zero-temperature zero-bias conductance G0 and
the Kondo temperature TK (Sect. 4). We then deduced
the Kondo temperature in two independent ways: from
the temperature dependence of the zero-bias conductance,
and from the couplings and Coulomb energies after the
formula proposed by Haldane [17]. Comparison between
the two values thus obtained lead to a very good agree-
ment (see Sect. 5). Finally, we compared in Section 6
our experimental results in the out-of-equilibrium regime
with the theoretical formula calculated by Schiller and
Hershfield [16]. This formula fits our experimental curves
and this questions the generality of this exact solution of
the Kondo problem.

2 Description of the sample

The sample is a quantum dot based on a AlGaAs/GaAs
heterostructure with the two-dimensional electron system
located 50 nm underneath the surface. The mobility and
electron density at 4 K are respectively 30 m2/(Vs) and
ne = 3.2 × 1015 m−2. To define the quantum dot, a
split-gate technique is used: the gate geometry is defined
by electron-beam lithography and by evaporating Cr/Au
electrodes. We chose a triangular geometry introduced and
thoroughly studied by the group of Sachrajda et al. [18–21]
(see insert Fig. 1). The effective radius of the dot is esti-
mated to R = 150 nm. Thus we can geometrically esti-
mate an upper limit for the number of electrons in the
dot, N � 0.5πR2ne = 46, and the average level spac-
ing ∆ � �

2/m∗R2 = 50 µeV, with m∗ = 0.067 me the
electronic effective mass in GaAs. A flat disk of same ra-
dius with electrodes at infinite distance has a capacitance
CΣ = 8ε0εGaAsR, with εGaAs = 13 the relative dielectric
constant of GaAs, leading to a Coulomb charging energy
of the dot of Ec = e2/(2CΣ) = 570 µeV.

Each gate is dedicated to a specific role. The left and
right finger gates (left and right), in reference to the top

gate, are used to tune respectively the tunnel couplings to
the source and to the drain. The plunger gate (pg) allows
to control almost independently the number of electron in
the dot. In the rest of this article, the top-gate voltage is
fixed to –0.712 V, whereas the left and right finger-gate
voltages are linearly tuned with respect to each other in
the ranges [–0.690 V; –0.705 V] and [–0.490 V; –0.475 V],
respectively.

The measurements were performed in a 3He–4He dilu-
tion fridge of present base temperature 50 mK using usual
lock-in techniques with an ac-excitation Vac = 2.5 µV rms
at a frequency of 11 Hz.

3 Extraction of the tunnel couplings

In Figure 1, the conductance versus plunger-gate voltage
is plotted for various temperatures1. Coulomb oscillations
are clearly recognizable. The large conductance in the
Coulomb valleys and concomitant large width of the Cou-
lomb peaks indicate a strong tunnel coupling to the leads.
In this set of parameters, the left tunnel-barrier (to source)
is close to pinch-off (data not shown). Consequently, we
expect a strong asymmetry between the tunnel couplings
to source and drain. To check this asymmetry, we analysed
the lineshape of the Coulomb peaks and their temperature
dependence.

The knowledge of the tunnel couplings of a quantum
dot to its leads is very important to achieve a complete
control of the transport properties of the quantum dot
system. Unfortunately, their determination is not always
straightforward. For example, in a weak tunnel coupling
regime (Γ < kBT < ∆), the usual two-terminal exper-
iment does not suffice and a three-terminal geometry is
needed [22].

However, when the temperature is the smallest energy
scale, the expected lineshape is a thermally-broadened
Lorentzian of width Γ = ΓS + ΓD and of height G0 =
(8e2/h)ΓSΓD/(ΓS + ΓD)2 at zero-temperature [23],

G(VG) = G0

∫ +∞

−∞
L(ε, VG)

[
− ∂f(ε/kBT )

]
dε (1)

with

L(ε, VG) =
(Γ/2)2

[ε − eα(VG − V res
G )]2 + (Γ/2)2

, (2)

−∂f(ε/kBT ) =
1

4kBT
cosh−2

(
ε

2kBT

)
, (3)

where T is the electronic temperature, ∂f the derivative
of the Fermi function, VG the gate voltage used to con-
trol the number of electrons in the dot (here, the plunger

1 The given temperature values are measured by a resistance
thermometer close to the sample. The electron temperature at
base temperature of the dilution refrigerator with this setup
is well below 100 mK (about 50 mK) as has been checked
on Coulomb blockade oscillations in the weak tunnel coupling
regime.
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Fig. 2. Conductance versus plunger-gate voltage measured at
T = 52 mK, 100 mK, 255 mK and 390 mK at zero source-
drain voltage and corresponding fits of the peaks 2 and 4 with a
thermally-broadened Lorentzian (see Eq. (1)). Parameters are
given in the text.

gate voltage), V res
G the gate voltage value at the resonance

and α the lever-arm parameter giving the conversion be-
tween the gate voltage and the energy scales (in the fol-
lowing α = 5 × 10−3; to deduce this parameter, we used
the Coulomb energies: see next section). The sum and the
product of the tunnel couplings are independently given
by the width and the height of the Coulomb peaks. Then,
resolution of a second order equation allowed us to extract
the tunnel couplings ΓS and ΓD. To distinguish them, we
used the fact that the tunnel barrier to source is closer to
pinch-off than the tunnel barrier to drain.

Actually, this analysis is easily performed for the well-
isolated Coulomb peak around Vpg = −1.68 V (peak 4),
but may be quite more complicated for other peaks. Let us
for example consider the Coulomb peak at Vpg = −1.81 V
(peak 2). The conductance of the valley on its right side
is not only enhanced due to the overlap of its adjacent
Coulomb peaks, but also because of the Kondo effect (see
next section). To obtain the right estimation of the tunnel
couplings, we fitted its lineshape with a Lorentzian only
on its left side. In Figure 2 are plotted the temperature
dependencies of these two peaks. The agreement is good,
except at the higher temperatures where the experimental
data show a higher conductance than the theoretical ex-
pectation. We believe this is due to the onset at finite tem-
perature of transport processes not included in the simple
model considered above, such as transport through excited
states which should occur at temperatures comparable to
the mean-level spacing, ∆/kB � 50 µeV/kB � 580 mK
(see the strong increase of the conductance of the valley
adjacent to peak 4).

In this gate voltage configuration, the deduced tunnel
couplings to source and drain Γ

(i)
S and Γ

(i)
D of the peak

(i) in Figure 1 are: Γ
(1)
S = 17 µeV and Γ

(1)
D = 100 µeV,

Γ
(2)
S = 30 µeV and Γ

(2)
D = 126 µeV, Γ

(3)
S = 35 µeV and

Γ
(3)
D = 175 µeV, Γ

(4)
S = 4 µeV and Γ

(4)
D = 46 µeV. We es-

timate an accuracy of around ±20% on these results. The
tunnel couplings for each peak are different because dif-

Fig. 3. Top panel: differential conductance versus source-drain
voltage and plunger gate voltage at T = 52 mK. The trace
(white line) crosses the middle of the valley between peak 2 and
3 of Figure 1, exhibiting a Kondo zero-bias anomaly.Bottom
panel: (left) differential conductance versus source-drain volt-
age (white line in the top panel) measured at T = 52 mK,
100 mK, 200 mK, 310 mK, 390 mK and 655 mK. (Right)
Temperature dependence of the zero-bias conductance and fits
after the Goldhaber-Gordon semi-empirical formula and the
Schiller-Hershfield theory (see parameters in text).

ferent states are at stake. These values confirm the strong
asymmetry of the tunnel coupling of the dot to its leads.

4 Tuning the Kondo effect

On the upper panel of Figure 3 the differential conduc-
tance is plotted versus source-drain voltage and plunger
gate voltage, corresponding to the zero-bias measurement
of Figure 12. Coulomb diamonds are marked by dashed
white lines. We extract the following Coulomb energies,
for the valleys from top to bottom: Ec = 180 µeV, 140 µeV
and 120 µeV. The Coulomb diamonds are smoothed as the
tunnel couplings and Coulomb energies are of the same
order of magnitude. But the estimate3 deduced from Fig-

2 The data presented in Figures 1 and 3 are measured sep-
arately. The shift of about 12 mV in the gate voltage axis
between Figures 1 and 3 is presumably due to a single-electron
recharging event in the vicinity of the quantum dot.

3 The dashed lines in Figure 3 follow the peak maximum
where visible. Assuming the same slope of borderlines be-
tween Coulomb blockade and single-electron-tunneling for the
different electron number on the quantum dot, the probable
Coulomb blockade regions are enclosed.
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ure 3 is quite different from the geometrical estimate we
made before (approximately 140 µeV versus 570 µeV).
One can understand this discrepancy within a capacitance
model. We compared the Coulomb diamond pattern of
Figure 3 with one measured in a well-defined Coulomb
blockade regime (data not shown). In the latter case the
Coulomb energy was approximately 650 µeV, in relative
agreement with the geometrical estimate. A comparison
between the Coulomb diamonds allowed us to estimate
that the capacitance between the dot and the source lead
increased by a factor 10 between the two regimes. We be-
lieve this enhancement can explain the strong decrease of
the Coulomb energy. Such a correlation between increase
of tunnel couplings and decrease in Coulomb energy has
already been observed by Foxman et al. [24] and was also
explained in terms of increase in the capacitive coupling
between the quantum dot and its leads. Such an effect was
also observed by Schmid et al. while varying the tunnel
coupling at constant number of electron in the dot [25].

The temperature dependence of Figure 1 shows a strik-
ing feature. Whereas the conductance of all the other
Coulomb valleys increases with increasing temperature,
the conductance of the valley at Vpg = −1.79 V de-
creases with increasing temperature. The valley marked
by a white line exhibits a peak at zero-bias corresponding
to this peculiar temperature dependence. It disappears as
the temperature is increased (see lower panel of Fig. 3).
This zero-bias anomaly is due to the Kondo effect (see
next section).

Afterwards, we changed the symmetry of the tunnel
couplings. To that purpose, we increased the right finger-
gate voltage and to keep the number of electrons in the dot
constant (maintaining the Kondo effect in this Coulomb
valley), we simultaneously decrease the left finger-gate
voltage linearly. Consequently, we expect a decrease of
the tunnel coupling to source and an increase of the cou-
pling to drain. The obtained differential conductance ver-
sus source-drain voltage characteristics are plotted in Fig-
ure 4. We note that the Kondo peak height decreases
whereas its width seems to stay constant. This suggests
qualitatively that the Kondo temperature is constant in
this gate range (see next section).

5 Analysis of the Kondo effect: equilibrium
regime

The Kondo effect has been under thorough studies since
the first breakthrough of Jun Kondo in 1964 [26]. Its res-
olution appeared to be a theoretical challenge. It lead
to the development of new techniques among them the
renormalisation group theory [27]. As the first example
of “asymptotic-free” theory, it is of prime importance in
theoretical physics [28]. Due to the high technicality of
the methods used to solve the Kondo problem, experi-
ments may come as a useful support to check the validity
of these methods. The observation of the Kondo effect in
articifial nanostructures in 1998 [1–3] opened some new
possibilities of comparison due to the high tunability of

Fig. 4. Differential conductance versus source-drain voltage
at T = 52 mK for various tunnel coupling asymmetries. From
the upper to the lower curve, the tunnel coupling to drain
is expected to increase and the tunnel coupling to source, to
decrease.

the quantum dots. It also allowed to explore the out-of-
equilibrium physics of the Kondo effect.

Direct and quantitative comparison between
available data and theory is mainly hindered by
the numerical nature of the theoretical predictions.
Goldhaber-Gordon et al. [13] lift this problem by propos-
ing from a theoretical curve given by Costi et al. [29] a
semi-empirical fit of the form

G(T ) = G0

(
T

′2
K

T 2 + T
′2
K

)s

(4)

with T the electronic temperature, T
′
K = TK/

√
21/s − 1

and s = 0.22 expected for a spin 1/2 impurity, and the zero
temperature conductance G0 = (8e2/h)ΓSΓD/(ΓS+ΓD)2.
The Kondo temperature TK is defined by G(TK) = G0/2
and its dependence described by the Haldane formula [17]

kBTK ∝
√

2ΓEC exp
[
πε0(ε0 + 2EC)

4ΓEC

]
(5)

with EC the Coulomb charging energy, ε0 the level posi-
tion in the dot (−EC < ε0 < 0) and Γ = ΓS + ΓD the
total tunnel coupling to the reservoirs, sum of the tunnel
couplings to the source and the drain. This procedure is
used in most of the experimental papers, but it does not
allow analysis of out-of-equilibium data.

Schiller and Hershfield [16] managed to calculate an
exact solution to the Kondo problem at a particular point
in the parameter space of the Kondo hamiltonian. It as-
sumes left and right longitudinal exchange couplings (i)
equal and (ii) set to a certain value, and (iii) zero lon-
gitudinal exchange coupling between the two reservoirs.
The exchange couplings J can be linked to the tunnel
couplings with the help of the Schrieffer-Wolff transfor-
mation [30] by 1/(ρJ) = −πε0(ε0 + 2EC)/(4ΓEC) with
ρ the density of states of the reservoirs at the Fermi
level. It should be noted that the Schrieffer-Wolff trans-
formation, from the Anderson impurity model [12] to
the Kondo model [26], generates equal longitudinal and
transversal exchange couplings, which is not the case in
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Fig. 5. Top panel: Kondo temperature versus right-finger gate
voltage extracted from the temperature dependence of the
zero-bias conductance after the Goldhaber-Gordon (upwards
triangles) and Schiller-Hershfield (downwards triangles) formu-
lae. The open squares give the Kondo temperature deduced
from the parameters given on the bottom panel of this figure
after the Haldane formula [17]. Bottom panel: Coulomb energy
and tunnel couplings to leads versus right-finger gate voltage.

the Schiller-Hershfield model. Therefore, a direct compar-
ison between the tunnel couplings extracted in this paper
and the exchange couplings used by Schiller and Hershfield
is difficult. At zero magnetic field, they found that the dif-
ferential conductance through the quantum dot is given by

∂Vsd
I(Vsd, T ) = G0

TK

2πT
�m

[
Ψ (1)

(
1
2

+
kBTK + ieVsd

2πkBT

)]

(6)
with G0 the zero-temperature zero-voltage conductance,
TK the Kondo temperature, T the electronic temperature,
Vsd the source-drain voltage, �m[Ψ (1)] the imaginary part
of the trigamma function. This formula contains only two
independent parameters (G0 and TK), which can be ex-
tracted from the temperature dependence of the zero-bias
conductance. It then allows to fit without any free param-
eters the Kondo peak in the differential conductance ver-
sus source-drain voltage characteristics. Relation (6) is a
compact rewriting of another formula: the integral of a
Lorentzian times the difference of the Fermi functions of
the reservoirs biased by e Vsd. This Lorentzian is exactly
the expected local density of states of a Kondo impurity
at equilibrium (Vsd = 0) and zero temperature.

The temperature dependence of the zero-bias con-
ductance is shown in the lower panel of Figure 3 and
was fitted using the formulae of Goldhaber-Gordon and
Schiller-Hershfield (Eqs. (4) and (6)). The deduced pa-
rameters are respectively for the two fits TK = 1 K,
G0 = 0.96 e2/h and TK = 0.85 K, G0 = 0.96 e2/h. The
two approaches give close results. The differences can be
explained by the different shapes of the two theoretical
predictions in the temperature regime below the Kondo
temperature.

To understand the behaviour shown in Figure 4, we
extracted the Coulomb energies, the tunnel couplings to

the leads and the Kondo temperature corresponding to
peak 2 in the same manner as explained before (results
shown in Fig. 5). Within the errors bars, the Coulomb en-
ergy stays constant around 125 µeV to 150 µeV in this
gate voltage range. The tunnel coupling to drain increases
monotonously from 130 µeV to 215 µeV, whereas the tun-
nel coupling to source decreases by a factor 4, from 40 µeV
down to 10 µeV (see lower panel of Fig. 5). This is the
behaviour we expected from the gate voltage tuning per-
formed here.

We have now all the parameters at hand to calcu-
late the Kondo temperature from the Haldane formula
(see Eq. (5)). To check its relevance in our experimental
configuration, we measured the temperature dependency
in three different asymmetry configurations, at Vright =
−0.4885 V, −0.4835 V and −0.4805 V. Each time, we de-
duced the Kondo temperature from the temperature de-
pendence of the zero-bias conductance fitted by the formu-
lae of Goldhaber-Gordon and Schiller-Hershfield (Eqs. (4)
and (6)). The six obtained Kondo temperatures are plot-
ted on the upper panel of Figure 5 (upwards triangles after
Goldhaber-Gordon formula and downwards triangles af-
ter Schiller-Hershfield formula). They are almost all equal
around 0.9 K to 1 K, confirming the first visual impression
of Figure 4. We then linearly interpolated for the interme-
diate (not measured) values the Coulomb energies and cal-
culated with the Haldane formula (Eq. (5)) the expected
Kondo temperature from the tunnel couplings evaluated
above. We obtained a very good agreement with the three
experimental values by using for the proportionality fac-
tor 1

2 (see also [13]): kBTK = 1
2

√
2ΓEC exp(−πEC/4Γ ) in

the middle of the Kondo valley (see upper panel of Fig. 5).
We want to stress this agreement in spite of the possible
multi-level configuration of the quantum dot. The satellite
peak observed around Vsd = 130 µV might be a hallmark
of a multi-level Kondo effect [31].

Can we now understand the behaviour observed in
Figure 4? In a regime of strong asymmetric tunnel cou-
pling (ΓS � ΓD), the Kondo temperature in the mid-
dle of the Kondo valley can be approximated by kBTK �
1
2

√
2ΓDEC exp(−πEC/4ΓD). The Kondo temperature de-

pends only on the Coulomb energy and the stronger cou-
pled tunnel barrier. In the experimental situation studied
here, these two energies are close to each other (actually,
the sample is almost in the mixed-valence regime): the
exponential term of the Kondo temperature is less sensi-
tive to small variations of them. Moreover EC and ΓD are
almost constant in the studied gate voltage range, then
the Kondo temperature is also constant. This behaviour
can be seen on top panel of Figure 5. Within the same
strong asymmetric regime, the zero-temperature conduc-
tance can be written: G0 � (2e2/h)ΓS/ΓD. The tunnel
coupling to source exhibits the most drastic change (di-
vided by a factor 4, see lower panel of Fig. 5) and con-
sequently drives the change of the Kondo peak height.
In this regime, the Kondo temperature and the zero-bias
zero-temperature conductance can be considered as inde-
pendently controlled by the tunnel couplings to drain and
to source, respectively.
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Fig. 6. Top panel: differential conductance versus source-drain
voltage around T = 55 mK measured in the middle of the
Kondo valley for three different tunnel coupling configura-
tions. For the parameters of the curves from top to bottom,
we extracted from the temperature dependence of the zero-
bias conductance the following parameters: TK = 0.85 K and
G0 = 0.96 e2/h, TK = 0.9 K and G0 = 0.75 e2/h, TK = 0.95 K
and G0 = 0.5 e2/h. The experimental curves shown on this
figure are then plotted with these values with the Schiller-
Hershfield formula (Eq. (6), thick lines) and a Fermi-liquid
description (thin lines, see text) without any free parameter.
The total tunnel coupling and the ratio of source to drain tun-
nel couplings extracted from the lineshapes of the Coulomb
peaks are also given for information.

6 Analysis of the Kondo effect:
out-of-equilibrium regime

In Figure 6, the differential conductance is plotted versus
source-drain voltage in three different tunnel couplings
configurations. These three configurations are those for
which we performed the temperature dependence men-
tioned above. Consequently, the Kondo temperature TK

and the zero-temperature conductance G0 are known and
the curves in Figure 6 can be fitted without any free pa-
rameters with the Schiller-Hershfield theory (see Eq. (6)
and thick lines in Fig. 6).

The agreement is quite good, except at ΓS/ΓD = 0.24,
where the shoulder around Vsd = −141 µV is not un-
derstood. It is even better than the expected universal
behaviour: G(Vsd) = G0[1 − (eVsd/kBTK)2] (see Fig. 5,
thin lines). All Kondo-like curves should follow this scal-
ing behaviour at low source-drain voltage and low tem-

perature: since in this regime the spin of the impurity
site is screened by the correlations with the reservoirs, a
Fermi-liquid behaviour is retrieved. The agreement with
the Schiller-Hershfield theory actually extends to larger
source-drain voltage than the universal behaviour in our
experimental situation. As the temperature is increased,
the Kondo peak height diminishes as expected and the
agreement lowers. At the highest measured temperature
(but still lower than the Kondo temperature), the Kondo
peak is not visible anymore and it seems only to fill the
Coulomb gap (see for example left lower panel of Fig. 3).

Although there is an obvious agreement between the
experimental data and the description by relation (6), sev-
eral questions arise: the solution of Schiller and Hershfield
for the Kondo problem is exactly valid for a certain set
of parameters expressed in terms of exchange couplings.
In a later paper, Majumdar, Schiller and Hershfield [32]
analysed the deviations from this exact solution as one
wanders slightly away from the solvable parameter set:
relation (6) seems to hold. In our experimental situation,
a large asymmetry in the tunnel couplings is present, with
the consequence that we are probably rather far away from
a parameter set for which relation (6) is exactly deriv-
able. Most important, the solution obtained by Schiller
and Hershfield [16] does not take into account any charge
fluctuations. Consequently, it should be a valid description
for quantum dots with large on-site Coulomb interaction,
weakly coupled to leads. The experimental configuration
studied here is the complete opposite case: the Coulomb
energy is comparable to the level width Γ . Despite of this,
relation (6) seems to be a good starting point for analysing
experimental data.

7 Conclusion

To conclude, we studied the Kondo effect in a quantum
dot asymmetrically coupled to its leads. This assertion is
supported by a careful analysis of the lineshapes of the
Coulomb peaks. Tuning the asymmetry of the tunnel cou-
pling, we were able to change the height of the Kondo peak
without changing the Kondo temperature. This behaviour
can be explained by the strong asymmetry of the tunnel
coupling. The estimate of the tunnel couplings allowed us
to calculate the Kondo temperature from the usual Hal-
dane formula and to obtain a good agreement with the
experimental measurements. Finally, we compared our ex-
perimental data in the out-of-equilibrium regime without
any free parameters to an exact solution of the Kondo
problem and found good agreement, although its validity
for our experimental situation is not proven. Further com-
parisons between experiment and theory are required. A
guideline for such a comparison is presented here.
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